Longmont Data Recovery in Boulder Denver CO with Computer Physicians near me

Fast Affordable Data Recovery in Longmont, & Boulder Colorado with Computer Physicians

Fast Data Recovery in Longmont, CO

Our lives are intricately woven with technology, and the importance of data cannot be overstated. From precious memories to critical business information, the loss of data can be devastating. Fortunately, residents of Longmont, Boulder, and Erie Colorado, can breathe a sigh of relief knowing that Steve at Computer Physicians, LLC are at their service, providing reliable fast and low-cost data recovery solutions.

The Need for Data Recovery Services:

Data loss can occur due to a variety of reasons, including accidental deletion, hardware failure, or software issues. When faced with such a situation, it’s crucial to turn to professionals who specialize in data recovery. Computer Physicians, LLC in Longmont understand the urgency and sensitivity of data recovery needs, and they are equipped with the expertise to handle a wide range of scenarios.

Affordability Matters:

One of the standout features of Computer Physicians in Longmont is their commitment to providing low-cost fast data recovery services usually between 1- 3 days. Understanding that data loss can happen unexpectedly and can be financially burdensome, the team at Computer Physicians aims to make their services accessible to individuals and businesses alike. This commitment to affordability sets them apart in the realm of data recovery services.

State-of-the-Art Technology:

Computer Physicians leverage state-of-the-art technology to ensure the highest chances of successful data recovery. Their cutting-edge tools and techniques enable them to recover data from various storage devices, including hard drives, SSDs, USB drives, and more. Whether it’s a hardware malfunction or a logical issue, their skilled technicians employ advanced methods to retrieve your valuable data.

Personalized Approach:

Every data recovery situation is unique, and Computer Physicians understand the importance of a personalized approach. They take the time to assess each case individually, tailoring their strategies to the specific needs and circumstances of the customer. This attention to detail enhances the likelihood of a successful recovery while maintaining the integrity of the data.

Customer-Centric Service:

Beyond technical expertise, Computer Physicians prioritize excellent customer service. They recognize that dealing with data loss can be a stressful experience, and their team is dedicated to providing a supportive and transparent process. Clients are kept informed at every stage of the data recovery journey, ensuring peace of mind and building trust in the service.

In Longmont, Boulder and Erie Colorado, Computer Physicians stand as a beacon of hope for those facing data loss challenges. Their commitment to affordability, state-of-the-art technology, personalized approach, and customer-centric service make them a reliable partner in the realm of data recovery. When the unexpected happens, trust Steve at Computer Physicians to recover your valuable data fast, efficiently and cost-effectively.

Boulder Computer Repair

Computer Physicians loves Boulder! We are glad to be your full time Computer company in Boulder, CO. We have been in business since 1999. Our office is close by Boulder servicing Boulder regularly. Call us for a appointment in Boulder Colorado. Providing Computer Repair, upgrades, sales, installations, troubleshooting, networking, internet help, Virus removal, and training.

Erie Computer Repair in Erie, CO Colorado

We are glad to be your full time Computer company in Erie, CO Colorado. We have been in Erie, Colorado from 2003 to 2015. We are now close by in Longmont, CO still servicing Erie CO regularly. Call us for a appointment in Erie Colorado. Providing Computer Repair, upgrades, sales, installations, troubleshooting, networking, internet help, Virus removal, and training.

Microsoft SCAM Solved

I went to  fix a computer from a customer in Erie, Colorado who got scammed from someone that took over their computer on remote access saying they were from Microsoft.

Microsoft SCAM Erie, Colorado

I traced the steps.Very interesting what they did they use the command prompt to put fake commands in saying that hackers were infiltrating your system and they needed to pay money to fix the issue. They said they were from Microsoft and need to fix the problems created by the hackers.

There are no hackers they put fake messages in certain places where you check the system for errors. Here’s a printout of the Windows command prompt with  bogus information

People who are not technicians are fooled by this. but this is a command prompt this is not a error screen. That’s why it says it’s an unrecognized command Copying and pasting bogus error information in the command prompt you supposed to only be typing commands People get confused by this who don’t know about computers.

Saying that you must  install Microsoft services at $1.54 a piece 198 times for each service. Then they take the credit card information charge your credit card for that and God knows for what else. They also did other things working very fast having the customer do things on the computer to distract your attention and having a lot of pop-up screens. While taking over the computer with remote access.

Microsoft SCAM Fixed Erie Colorado

I was able to undo any damage they caused and get the computer back up and running like before.  So in the end I fixed the issue.  But people need to call Computer Physicians if they get a problem with their computer so that they don’t cause more issues or problems.  This hacker could have done worse if the customer did not call Longmont Computer Physicians to come solve the issue.

Boulder/Longmont Computer Repair – PC with no hard drive used

Longmont Colorado PC Computer not using it’s hard drive:

Computer Physicians, LLC  just worked on a unusual situation on a Zotac mini PC computer in Longmont, CO that had a boot windows drive that was filled up.  I thought this would be good to share with my readers:

This very small Zotac mini PC computer running Windows 10 home with 4GB of RAM was booting to a 64GB memory chip located on the motherboard and was not using the 300GB internal SATA hard drive.  As a result since the Windows OS was on a small 64GB memory chip it quickly got filled to capacity.  I backed up the customer’s data to an external hard drive.   The internal hard drive was not being used except for the storing of a few small files.   I could not clone the 64GB memory chip but was able to transfer the OS using special disk software.  I then needed to go into the BIOS and set the boot drive to the internal drive.  The computer is running  slower now since it is not using the small 64GB memory chip for windows and the CPU and computer itself is an inexpensive under-powered computer which was designed to run on the 64GB memory chip. The problem with this design is that the 64GB memory chip quickly gets filled to capacity.  (Windows 10 uses a lot of hard drive memory most systems have 1000GB or more)

I do not like this design and would not recommend this Zotac computer to a client.

The computer will run faster if the original drive is replaced with a solid state drive and if the OS can be transferred and if more RAM memory is installed.

These are some of the situations that Computer Physicians, LLC runs into.


Longmont’s Newest Computer Viruses – Longmont/Boulder CO – Computer Physicians

Computer Repair Longmont, CO Virus removal. – Computer Physicians, LLC

Here is some news about the latest computer viruses out today that Computer Physicians in Longmont/Boulder, CO can help you with:


A new ransomware exploit dubbed “Petya” struck major companies and infrastructure sites this July 2017, following last month’s WannaCry ransomware attack, which wreaked havoc on more than 300,000 computers across the globe. Petya is believed to be linked to the same set of hacking tools as WannaCry.

Petya already has taken thousands of computers hostage, impacting companies and installations ranging from Ukraine to the U.S. to India. It has impacted a Ukrainian international airport, and multinational shipping, legal and advertising firms. It has led to the shutdown of radiation monitoring systems at the Chernobyl nuclear facility.


Longmont Boulder Computer Repair Data Recovery -Video

Longmont Boulder Computer Repair Data Recovery PC service Virus removal.

https://www.computer-physicians.com/ in Longmont, Boulder, Erie, Denver, Colorado. Onsite at your location – we come to you! Onsite, in-shop or remote help.  Video about Computer Physicians:


Longmont Boulder Computer Repair PC service Virus removal, Data Recovery https://www.computer-physicians.com/ in Longmont, Boulder, Erie, Denver, Colorado.  Onsite at your location – we come to you! Onsite, in-shop or remote help.


Boulder/Longmont Computer Repair – History of the Computer – Computer Physicians, LLC

Boulder/Longmont Computer Repair – History of the Computer – Computer Physicians, LLC  

Computer Physicians provides data recovery, computer troubleshooting, virus removal, networking and other computer fixes.

Here is a good article about the history of computers by marygrove.edu

History of the Computer

The history of the computer can be divided into six generations each of which was
marked by critical conceptual advances.
The Mechanical Era (1623-1945)
The idea of using machines to solve mathematical problems can be traced at least as
far back as the early 17th century, to mathematicians who designed and implemented
calculators that were capable of addition, subtraction, multiplication, and division.
Among the earliest of these was Gottfried Wilhelm Leibniz (1646-1716), German
philosopher and co-founder (with Newton) of the calculus. Leibniz proposed the idea
that mechanical calculators (as opposed to humans doing arithmetic) would function
fastest and most accurately using a base-two, that is, binary system.
Leibniz actually built a digital calculator and presented it to the scientific authorities
in Paris and London in 1673. His other great contribution to the development of the
modern computer was the insight that any proposition that could be expressed
logically could also be expressed as a calculation, “a general method by which all the
truths of the reason would be reduced to a kind of calculation” (Goldstine 1972).
Inherent in the argument is the principle that binary arithmetic and logic were in some
sense indistinguishable: zeroes and ones could as well be made to represent positive
and negative or true and false. In modern times this would result in the understanding
that computers were at the same time calculators and logic machines.
The first multi-purpose, i.e. programmable, computing device was probably Charles
Babbage’s Difference Engine, which was begun in 1823 but never completed. A more
ambitious machine was the Analytical Engine. It was designed in 1842, but
unfortunately it also was only partially completed by Babbage.
That the modern computer was actually capable of doing something other than
numerical calculations is probably to the credit of George Boole (1815-1864), to
whom Babbage, and his successors, were in deep debt. By showing that formal logic
could be reduced to an equation whose results could only be zero or one, he made it
possible for binary calculators to function as logic machines (Goldstine 1972).
First Generation Electronic Computers (1937–1953)
Three machines have been promoted at various times as the first electronic computers.
These machines used electronic switches, in the form of vacuum tubes, instead of
electromechanical relays. Electronic components had one major benefit, however:
they could “open” and “close” about 1,000 times faster than mechanical switches.
A second early electronic machine was Colossus, designed by Alan Turing for the
British military in 1943. This machine played an important role in breaking codes
used by the German army in World War II. Turing’s main contribution to the field of
computer science was the idea of the “Turing machine,” a mathematical formalism,
indebted to George Boole, concerning computable functions.
The machine could be envisioned as a binary calculator with a read/write head
inscribing the equivalent of zeroes and ones on a movable and indefinitely long tape.
The Turing machine held the far-reaching promise that any problem that could be
calculated could be calculated with such an “automaton,” and, picking up from
Leibniz, that any proposition that could be expressed logically could, likewise, be
expressed by such an “automaton.”
The first general purpose programmable electronic computer was the Electronic
Numerical Integrator and Computer (ENIAC), built by J. Presper Eckert and John V.
Mauchly at the University of Pennsylvania. The machine wasn’t completed until 1945,
but then it was used extensively for calculations during the design of the hydrogen
The successor of the ENIAC, the EDVAC project was significant as an example of
the power of interdisciplinary projects that characterize modern computational science.
By recognizing that functions, in the form of a sequence of instructions for a
computer, can be encoded as numbers, the EDVAC group knew the instructions could
be stored in the computer’s memory along with numerical data (a “von Neumann
The notion of using numbers to represent functions was a key step used by Gödel in
his incompleteness theorem in 1937, work with which von Neumann, as a logician,
was quite familiar. Von Neumann’s own role in the development of the modern digital
computer is profound and complex, having as much to do with brilliant administrative
leadership as with his foundation insight that the instructions for dealing with data,
that is, programming, and the data themselves, were both expressible in binary terms
to the computer, and in that sense indistinguishable one from the other. It is that
insight which laid the basis for the “von Neumann machine,” which remains the
principal architecture for most actual computers manufactured today.
Second Generation Computers (1954–1962)
The second generation saw several important developments at all levels of computer
system design, from the technology used to build the basic circuits to the
programming languages used to write scientific applications.
Memory technology was based on magnetic cores which could be accessed in random
order, as opposed to mercury delay lines, in which data was stored as an acoustic
wave that passed sequentially through the medium and could be accessed only when
the data moved by the I/O interface.
During this second generation many high level programming languages were
introduced, including FORTRAN (1956), ALGOL (1958), and COBOL (1959).
Important commercial machines of this era include the IBM 704 and its successors,
the 709 and 7094. The latter introduced I/O processors for better throughput between
I/O devices and main memory.
Third Generation Computers (1963–1972)
The third generation brought huge gains in computational power. Innovations in this
era include the use of integrated circuits, or ICs (semiconductor devices with several
transistors built into one physical component), semiconductor memories starting to be
used instead of magnetic cores, microprogramming as a technique for efficiently
designing complex processors, the coming of age of pipelining and other forms of
parallel processing, and the introduction of operating systems and time-sharing.
Fourth Generation Computers (1972–1984)
The next generation of computer systems saw the use of large scale integration (LSI —
1000 devices per chip) and very large scale integration (VLSI — 100,000 devices per
chip) in the construction of computing elements. At this scale entire processors will fit
onto a single chip, and for simple systems the entire computer (processor, main
memory, and I/O controllers) can fit on one chip. Gate delays dropped to about 1ns
per gate.
Two important events marked the early part of the third generation: the development
of the C programming language and the UNIX operating system, both at Bell Labs. In
1972, Dennis Ritchie, seeking to meet the design goals of CPL and generalize
Thompson’s B, developed the C language.
Fifth Generation Computers (1984–1990)
The development of the next generation of computer systems is characterized mainly
by the acceptance of parallel processing. The fifth generation saw the introduction of
machines with hundreds of processors that could all be working on different parts of a
single program. The scale of integration in semiconductors continued at an incredible
pace — by 1990 it was possible to build chips with a million components — and
semiconductor memories became standard on all computers.
Sixth Generation Computers (1990–)
Many of the developments in computer systems since 1990 reflect gradual
improvements over established systems, and thus it is hard to claim they represent a
transition to a new “generation”, but other developments will prove to be significant
One of the most dramatic changes in the sixth generation will be the explosive growth
of wide area networking. Network bandwidth has expanded tremendously in the last
few years and will continue to improve for the next several years.

Longmont/Boulder Computer Repair service & sales

Longmont Colorado Computer Repair with Computer Physicians

Computer Physicians provides high quality low cost computer repair, training, help, data recovery  on PC Windows and some Mac apple computers in Boulder Denver and Longmont, CO, and worldwide via the internet.

Here is a good article about computer topics questions and answers


Original link to the article is here:
1. What is a computer?
2. What are the different functions of a computer?
3. Draw the hierarchical classification of the computer.
4. How a minicomputer different from a mainframe?
5. What is Super computer?
6. Differentiate Input and Output device.
7. What is a storage device? What is the common
8. What do you mean by a processing device? What are the
various types of processing devices?
9. Differentiates Serial and Parallel port.
10. What is an interface?
11. What is a microprocessor?
12. What are the factors affecting the speed of the
13. What are the differences between Multitasking and
Multitasking- Enables the processor to do multiple programs
simultaneously by fast switching through the programs. Here
doesn’t have the involvement of multiple processors.
Multiprocessing- Enables the processor to do multiple
programs simultaneously by the use of multiple processors.
14. What the difference between FSB and BSB?
Front Side Bus. Another name for the system bus. The Front
Side Bus connects the CPU to main memory. A microprocessor
bus that connects the CPU to a Level 2 cache is called Back
Side Bus. Typically, a backside bus runs at a faster clock speed
than the Front Side Bus.

15. What is packaging a microprocessor? What are the
different packaging available?
Packaging is the process of connecting a microprocessor with a
computers motherboard. The types of microprocessor
packaging are;
a. PGA
d. LGA

16. What is LGA ?
An LGA socket is the connection point for a central processing
unit (CPU. to fit into a motherboard. The LGA stands for Land
Grid Array.

17. What is CISC and RISC?
Reduced Instruction Set Computer (RISC. and Complex
Instruction Set Computer (CISC. are two philosophies by
which computer chips are designed. RISC became a popular
technology buzzword in the 1990s, and many processors used
in the enterprise business segment were RISC-based.

18. What is Intel Pentium?
The Intel Pentium is a series of microprocessors first
developed by the Intel Corporation. These types of processors
have been found in many personal computers since 1993.

19. Any difference between Pentium III and IV.
There have been a number of Pentium processor lines starting
with the base Pentium in 1993.The of the recent Pentium
entries are Pentium III and Pentium 4.
a. In a Pentium III processor, the bus speed is generally 133
MHz (although there were a few with 100 MHz). The lowest
bus speed on a Pentium IV is 400 MHz, and there are versions
with much higher speeds (topping at 1066 MHz for the
“extreme edition”).
b. The Pentium 4s are smaller than the Pentium IIIs
c. Pentium III processors had (for the most part. about 512 KB
of cache. Pentium 4 processors, on the other hand, start at 512

20. What are the differences between Intel Celeron and
Pentium family of Processors?
According to Build Gaming Computers, Celeron processors are
the low-end processor intended for standard home computer
use. SciNet reports the best Celeron processor has an L2 Cache
of 128kb, a clock speed limit of about 2.0 GHz and runs at a
core voltage of 1.75V. These are useful numbers for

The top Pentium processor is the Pentium 4 Prescott. CPU
Scorecard reports it has an L2 cache of 1MB (1024kb), a
potential 3.0 GHz clock speed and runs at about 1.4V. The
lowest performing Pentium 4 processor, the Willamette, has

an L2 cache of 256kb, a potential 2.0 GHz clock speed and
runs at about 1.7V.

21. What is Hyper Threading? What is the use of it?
A thread of execution, or simply a “thread,” is one series of
instructions sent to the CPU. Hyper-threading is a technology
developed to help make better use of spare processing cycles.
Hyper-threaded processors have a duplicate set of registers,
small spaces of high-speed memory storage used to hold the
data that is currently needed to execute a thread. When a CPU
core is delayed, waiting for data to be retrieved from another
place in memory, it can use these duplicate registers to spend
the spare computation cycles executing a different thread. The
second set of registers will be pre-loaded with the data needed
to execute the second thread, so the CPU core can begin work

22. What is Intel Atom processor?
The Intel Atom family of processors are extremely small
central processing units (CPU. found mostly in ultraportable
devices, such as netbooks, cell phones and tablet PCs,
according to Intel. While small and light on energy use, Atom
processors can handle the most common tasks, such as email
and instant messaging.

23. What is Nehalem Architecture?
Nehalem is Intel’s new microprocessor architecture The Core
i7 chips were the first processors ever produced using an
architecture called Nehalem.

24. Which is a heavy-duty Microprocessor of Intel?
Intel Xeon.

25. Which is the processor suitable from Intel family of
processors for Server and Workstation?
Intel Xeon.

26. What is full name of AMD?

Advanced Micro Devices.

27. What are the latest Processor of Intel and AMD?
For intel it is Intel Core i7 and AMD Opteron 6200 Series

28. Write socket LGA 775 is apt for which type of Intel
The top of the line for the LGA775 series CPU socket was the
Core 2 processor series, with the Core 2 Duo E8600, Core 2
Extreme QX9770 and Core 2 Quad Q9650 being the three top

29. Socket 939 is developed by AMD. It supports a maximum
of how many bits of computing? What are the the different
processors of AMD is suitable for this socket?
AMD Athlon 64, AMD Athlon 64FX and AMD Athlon 64 X2.

30. Which type of socket is needed to connect a dual core
processor of Intel?
Socket LGA 775.

31. What is Heat Sink? What is its use? If it is not in the system
what will happen?
A heat sink is a component used to lower the temperature of a
device.It is most commonly there on the microprocessor. If it
is not properly fixed the system, the system will shutdown
automatically to prevent further damage to the processor.

32. A CPU fan should be placed in system. Why?
To make the system cool and more functioning.

33. What is Upgrading a microprocessor? Why we have to do

34. Upgrading a microprocessor is just physically replacing a
processor with a new one. Before doing so we have to make
sure that the processor we want to use for your upgrade is
physically compatible with the socket on your computer’s
motherboard. We also have to make sure that the motherboard
has the internal logic to support the processor.

35. What are the causes of overheating of microprocessor?
a. Processor fan may not be properly connected.
b. Heat sink may be not contacted with the processor.
c. Jumpers may be configured to over clock the CPU.
d. Voltage supply incompatible

36. No Display. What is the problem?
a. CPU fan problem
b. Heat sink related issue
c. Power related issues
d. Improper Jumper settings

37. What is the use of Conventional memory in the system?
The size of conventional memory is 640KB. It is also called
DOS memory or Base memory. This memory is used by some
small programs like Word star, Lotus etc…DOS cannot use
more than 640KB.

38. What is main memory in a computer?
The main memory in a computer is called Random Access
Memory. It is also known as RAM. This is the part of the
computer that stores operating system software, software
applications and other information for the central processing
unit (CPU. to have fast and direct access when needed to
perform tasks.

39. What is Cache memory? What is the advantage if a
processor with more cache memory you are using?
Cache memory is the memory area between RAM and
Processor. If cache memory increases the speed of the system
will also improved.

40. What are the different types of RAM?

41. Differentiate SRAM and DRAM.
Static RAM stores each bit of data on six metal oxide

semiconductor field effect transistors, or MOSFETs. SRAM is
used in devices that require the fastest possible data access
without requiring a high capacity. Some examples are CPU
caches and buses, hard drive and router buffers and printers.
Dynamic RAM stores data using a paired transistor and
capacitor for each bit of data. Capacitors constantly leak
electricity, which requires the memory controller to refresh the
DRAM several times a second to maintain the data.

42. What are the different DRAM types?

43. What is the difference between DDR-I and DDR-II?
DDR2 is the successor to DDR RAM. DDR 2 incorporates
several technological upgrades to computer system memory,
as well as an enhanced data rate.DDR 2 is capable of achieving
twice the data transfer rate of DDR-I memory because of its
higher clock speed. It operates at a lower voltage than DDR-I
as well: 1.8 volts instead of 2.5.

44. Which is the latest DDR version? Which processor of Intel
will support it?
The latest DDR version is DDR-III. Intel’s all latest processors
such as Core i3,i5 and i7 will support it.

45. What are VRAM and SGRAM?
VRAM is Video Random Access Memory. Video adapter or
video system uses VRAM. VRAM is dual ported. It is costly.
But SGRAM is not dual ported and not costly. It is a less
expensive approach to graphics functions. Most commonly all
low cost graphics cards are using it.

46. What is SODIMM memory module?
Small outline dual in-line memory module (SODIMM or
SO-DIMM. is a type of random access memory (RAM). It is a
smaller version of a dual in-line memory module (DIMM).It is
the type of the memory module can be used in laptop.

47. Which is the memory packaging suitable for a sub-note
book system?

Micro DIMM

48. What is ECC/EPP?
EPP/ECP (Enhanced Parallel Port/Enhanced Capability Port.
is a standard signaling method for bi-directional parallel
communication between a computer and peripheral devices
that offers the potential for much higher rates of data transfer
than the original parallel signaling methods. EPP is for
non-printer peripherals. ECP is for printers and scanners.
EPP/ECP is part of IEEE Standard 1284.

49. What is over clocking?
Over clocking is the process of forcing a computer component
to run at a higher clock rate.

50. What is memory bank?
Sets of physical memory modules is referred to as memory
banks. A memory bank serves as a repository for data, allowing
data to be easily entered and retrieved.
51. What we need to consider before connecting a memory to
the system?
a. Capacity of the RAM required
b. Check if installed memory is supported by motherboard and
c. Form factor of the RAM
d. Type of RAM needed
e. Warranty of the RAM
52. What is Upgrading the memory?
Adding a memory module to the existing bank on the available
slot or replacing the previous one with the increased memory
size is also called upgrading memory. This will surely increase
the performance of the computer.
53. What is BIOS beep code? What it does mean?
BIOS beep codes are the signs of different issues of the
computer. The beep code may vary depends on the

manufacture of BIOS. For example in case of Award BIOS the
beep code will be,
1 long beep- shows memory problem
1 long beep and 2 short beeps- failure of DRAM parity
1 log beep and 3 short beeps- signifies Video error
Continuous beep- signifies failure in memory or Video
54. What are Solid State Drive means?
A solid-state drive (SSD), sometimes called a solid-state disk
or electronic disk, is a data storage device that uses solid-state
memory to store data. SSDs use microchips which retain data
in non-volatile memory chips and contain no moving parts.
Compared to electromechanical HDDs, SSDs are typically less
susceptible to physical shock, are silent, have lower access time
and latency, but are more expensive per gigabyte (GB).
55. What is RDRAM?
Short for RAMBUS DRAM, a type of memory (DRAM.
developed by Rambus, Inc.
56. What is SIMM? Is it is using now?
Acronym for Single In line Memory Module, a small circuit
board that can hold a group of memory chips. Typically,
SIMMs hold up to eight (on Macintoshes. or nine (on PCs.
RAM chips. On PCs, the ninth chip is often used for parity
error checking. Unlike memory chips, SIMMs are measured in
bytes rather than bits.
Now a days this memory module is not used.
57. Why do we call motherboard a motherboard?
Motherboard is the basic integrated board of the computer on
which all other components are connected. So that usually we
call motherboard a “motherboard”.
58. What is motherboard? What are the different types of it?
Motherboard is the basic integrated board of the computer on
which all other components are connected. This is classified

mainly into three Desktop, Laptop and Server motherboard.
59. What is the difference between integrated and
non-integrated motherboard?
In integrated motherboard all of the external ports will be
present. But in case of non-integrated motherboard only some
important ports will be available instead of all. The
non-integrated motherboard is an old type of motherboard
which now a day’s not commonly available.
60. How a server motherboard different from a desktop?
A server motherboard is different from a desktop in features
and performance. The number of processor support, RAM
slots ,Expansion card slots etc…are more. For example the
Intel® Server Board S5000PSL has the performance and
features for growing businesses demand. It provides excellent
data protection, and advanced data management. It support
64-bit Multi-Core Intel® Xeon® processor. Eight fully
buffered 533/667 MHz DIMMs. Up to six SATA 3Gb/s ports.
61. What is form factor of motherboard?
The form factor of a motherboard determines the
specifications for its general shape and size. It also specifies
what type of case and power supply will be supported, the
placement of mounting holes, and the physical layout and
organization of the board. Form factor is especially important
if you build your own computer systems and need to ensure
that you purchase the correct case and components.
62. What is ATX? How it is different from AT? Which is using
AT is a short for advanced technology, the AT is an IBM PC
model introduced in 1984. It includes an Intel 80286
microprocessor, a 1.2MB floppy drive, and an 84-key AT
keyboard. The ATX form factor specified changes to the
motherboard, along with the case and power supply. Some of
the design specification improvements of the ATX form factor
included a single 20-pin connector for the power supply, a

power supply to blow air into the case instead of out for better
air flow, less overlap between the motherboard and drive bays,
and integrated I/O Port connectors soldered directly onto the
motherboard. The ATX form factor was an overall better
design for upgrading.
63. What is the need of expansion slot in motherboard?
Alternatively referred to as an expansion port, an expansion
slot is a slot located inside a computer on the motherboard or
riser board that allows additional boards to be connected to it.
64. What is PCI slot? How is different from PCI Express
local bus standard developed by Intel Corporation. PCI
Express (Peripheral Component Interconnect Express),
officially abbreviated as PCIe, is a computer expansion card
standard designed to replace the older PCI, PCI-X, and AGP
bus standards.
65. What is AGP slot? What is its use?
The Accelerated Graphics Port (often shortened to AGP. is a
high-speed point-to-point channel for attaching a video card to
a computer’s motherboard, primarily to assist in the
acceleration of 3D computer graphics. Since 2004 AGP has
been progressively phased out in favor of PCI Express (PCIe).
66. What is jumper? What is the need?
A metal bridge that closes an electrical circuit. Typically, a
jumper consists of a plastic plug that fits over a pair of
protruding pins. Jumpers are sometimes used to configure
expansion boards. By placing a jumper plug over a different set
of pins, you can change a board’s parameters.
67. What CMOS and CMOS battery?
Short for complementary metal oxide semiconductor.
Pronounced see-moss. The CMOS chip holds the date, time,
and system setup parameters. This chip is powered by a 3Volt

CMOS battery.
68. What is chipset?
A number of integrated circuits designed to perform one or
more related functions. This is one of the processing device in
a computer.
69. Explain any three Intel chipset?
a. Intel P55 Express Chipset.-Desktop PC platforms based on
the Intel® P55 Express Chipset combined with the Intel®
Core™ i7-800 series processors and Intel® Core™ i5-700
series processors create intelligent performance for faster
multi-tasking, digital media creation and gaming.
b. Intel HD55 Express Chipset- a new architecture designed to
deliver quality, performance, and industry-leading I/O
technologies on platforms powered by the Intel® Core™
i7-800, Intel® Core™ i5, and Intel® Core™ i3 processors.
c. Intel E7500 Chipset- a volume chipset supports
dual-processor (DP. server systems optimized for the Intel®
Xeon® processor.
70. Which is the chipset needed for Intel Core i7 and Core i5
Intel Core i7 900-series uses x58 chip set and Core i7
800-series and Core i5 processors runs on P55 chipset.
71. Which is the socket used by Intel Core i7 and i5 processors?
Intel Core i7 900-series uses LGA1366 socket and Core i5
CPUs–all three run on Intel’s latest P55 chipset and LGA1156
72. What are the motherboard manufacturing companies?
Intel, Gigabyte, ASUS, Mercury, HP, Acer, Biostar, Compaq,
Digital, IBM, AMI.
73. Before upgrading/replacing a motherboard what you need
to consider?
a. Power Connectors
b. Memory Support
c. Hard Disk Support
d. System Case
74. Can you upgrade motherboard?

75. One system is not starting, but the fan is working. What is
the problem?
76. What is Intel LGA 1155 Socket?
LGA 1155, also called Socket H2, is an Intel microprocessor
compatible socket which supports Intel Sandy Bridge and the
up-coming Ivy Bridge microprocessors.LGA 1155 is designed
as a replacement for the LGA 1156 (known as Socket H).
77. What is power supply unit?
A power supply unit (PSU. supplies direct current (DC. power
to the other components in a computer. It converts generalpurpose
alternating current (AC. electric power from the
mains to low-voltage (for a desktop computer: 12 V, 5 V, 5VSB,
3V3, -5 V, and -12 V. DC power for the internal components of
the computer.
78. What are the different types of Form Factors of Power
AT , ATX, Flex ATX, Micro ATX etc…
79. What is NLX?
NLX (New Low Profile Extended. was a form factor proposed
by Intel and developed jointly with IBM, DEC.
80. What is Switching Mode Power Supply?
A switched-mode power supply (switching-mode power
supply, SMPS, or simply switcher. is an electronic power
supply that incorporates a switching regulator in order to be
highly efficient in the conversion of electrical power. Like other
types of power supplies, an SMPS transfer power from a
source like the electrical power grid to a load (e.g., a personal
computer. while converting voltage and current
characteristics. An SMPS is usually employed to efficiently
provide a regulated output voltage, typically at a level different
from the input voltage.
81. What is the use of Molex Power connector?
Molex is a four pin power connector found in SMPS. It is used
to supply power to HDD, CD Drive, DVD Drive etc…
82. What is Berg (mini Molex. connector is used to….

To provide power to Floppy Disk Drive.
83. What are the different color cables found in Molex
connector? What is the Power of it.
-12V –Blue, -5V –White, 0V –Black, +3.3V –Orange, +5V
–Red, +12V –Yellow.
84. What are the methods used in a system for cooling?
a. Large System Case
b. Arrangement of Internal Components
c. Keeping the System Clean.
d. Proper Working of the System Case Fan.
85. Power supply fan is not working and it emits a lot of sound.
What will the probable cause?
Most of the time this issue arises due to lots of dust is
accumulated on the fan motor.
86. What is the capacity of a Floppy Disk?
87. Which is the medium used in a floppy for storing data?
Magnetic Media.
88. What is write protected notch in a floppy? What is its use?
This is a switch used to eliminate the accidental deletion of
data from the floppy.
89. How many tracts and sectors found in a normal floppy
80 tracks and 18 sectors.
90. Which is the file system of a floppy disk?
91. How can you format a floppy? What is happening if you do
Insert the floppy to the system and open my computer. There
we can find the icon. Just right click and select format option.

Otherwise we can use format command . Formatting a floppy
will creates sectors and tracks on the floppy.
92. System is not showing floppy disk drive icon in
Mycomputer.What will the probable cause?
The device is not detected or disabled.
93. I have inserted a new floppy disk into my drive. The data
can be read. But not able to make modifications. Why?
The disk may be in write protected mode.
94. What is HDD? What are the different types available in the
market now?
A hard disk drive (HDD; also hard drive or hard disk. is a
non-volatile, random access digital magnetic data storage
device. It is the secondary storage media. There are different
types of hard disk, based on the the intefaces they used we can
classify them as IDE, SATA, SCSI etc…
95. What is SATA?
Serial ATA (SATA or Serial Advanced Technology Attachment.
is a computer bus interface for connecting host bus adapters to
mass storage devices such as hard disk drives and optical
drives. Serial ATA was designed to replace the older parallel
ATA (PATA. standard (often called by the old name IDE),
offering several advantages over the older interface: reduced
cable size and cost (7 conductors instead of 40), native hot
swapping, faster data transfer through higher signalling rates,
and more efficient transfer through an (optional. I/O queuing
96. In Speed how SATA is different from IDE?
SATA- Serial Advanced Technology Attachment (SATA. is high
speed serial interface designed to replace IDE and EIDE drive
standard SATA has a seven pin connector. SATA transfer
speed of data up to 600 MB per second. Now a day use SATA.
IDE- Integrated Drive Electronics (IDE. it has a 40/80 pins

connector. IDE transfer speed of data up to 100/133 MB per
second few time ago mostly use IDE.
97. What is eSATA?
External Serial Advanced Technology Attachment or eSATA is
an external interface for SATA technologies. eSATA cables are
narrow and can be up to 6.56 feet (2 meters. in length. eSATA
requires its own power connector. It is still an excellent choice
for external disk storage.
98. What is SCSI? Is the SCSI Hard Disk is needed for a home
SCSI is Small Computer System Interface , is a type of
interface used for computer components such as hard drives,
optical drives, scanners and tape drives. SCSI is a faster, more
robust technology than IDE amd SATA, and has traditionally
been utilized in servers. Aside from speed, another great
advantage over IDE and SATA is that the SCSI card can
connect 15 or more devices in a daisy chain. The controller
assigns each device its own SCSI ID, allowing for great
flexibility towards expanding any system. It is more costly. It is
not needed for a home purpose.
99. Is there is USB HDD? If yes what is the speed?
Yes. If your HDD is based on USB 3.0 it can offer a maximum
transmission speed of up to 5 Gbit/s (640 MB/s), which is over
10 times faster than USB 2.0 (480 Mbit/s, or 60 MB/s).
100. What is IEEE 1394 Interface?
The IEEE 1394 interface is a serial bus interface standard for
high-speed communications. The interface is also known by
the brand names of FireWire (Apple), i.LINK (Sony), and Lynx
(Texas Instruments). IEEE 1394 replaced parallel SCSI in
many applications, because of lower implementation costs and
a simplified, more adaptable cabling system. The original
release of IEEE 1394-1995 specified what is now known as
FireWire 400. It can transfer data between devices at 100,
200, or 400 Mbit/s.

Original link to the article is here: